Judea Pearl and Dana Mackenzie: “The Book of Why: The New Science of Cause and Effect”, Basic Books, 2018. ISBN: 9780465097609
www.basicbooks.com/titles/judea-pearl/the-book-of-why/9780465097609/We have finally completed a detailed review of this important and outstanding book - the review will hopefully be published in the journal Artificial Intelligence. But a preprint of the full review is now available.
Some excerpts from the review:
- Judea Pearl, a Turing Award prize winner, is a true giant of the field of computer science and artificial intelligence. The Turing award is the highest distinction in computer science; i.e., the Nobel Prize of computing. To say that his new book with Dana Mackenzie is timely is, in our view, an understatement. Coming from somebody of his stature and being written for a general audience (unlike his previous books), means that the concerns we have held about both the limitations of solely data driven approaches to artificial intelligence (AI) and the need for a causal approach, will finally reach a very broad audience.
- According to Pearl, the state of the art in AI today is merely a ‘souped-up’ version of what machines could already do a generation ago: find hidden regularities in a large set of data. “All the impressive achievements of deep learning amount to just curve fitting”, he said recently.
- In Chapter 1, the core message about the need for causal models is underpinned by what Pearl calls “The Ladder of Causation”, which is then used to orient the ideas presented throughout the book. Pearl’s ladder of causation suggests that there are three steps to achieving true AI. .... Pearl also characterises these three steps on the ladder as 1) ‘seeing’; 2) ‘doing’; and 3) ‘imagining’.
- One of the reasons ‘deep learning’ has been so successful is that many problems can be solved by optimisation alone without the need to even consider advancing to rungs in the ladder of causation beyond the first. These problems include machine vision and machine listening, natural language processing, robot navigation, as well as other problems that fall within the areas of clustering, pattern recognition and anomaly detection. Big data in these cases is clearly very important and the advances being made using deep learning are undoubtedly impressive, but Pearl convincingly argues that they are not AI.
- There is much excellent material in this book but, for us, the two key messages are: 1) “True AI” cannot be achieved by data and curve fitting alone, since causal representation of the underlying problems is also required to answer “what-if” questions, and 2) Randomized control trials are not the only ‘valid’ method for determining causal effects.
For the full review see:
Review of: Judea Pearl and Dana Mackenzie: “The Book of Why: The New Science of Cause and Effect”, Basic Books, 2018 DOI: https://doi.org/10.13140/RG.2.2.27512.49925, by Norman Fenton, Martin Neil, and Anthony Constantinou
No comments:
Post a Comment